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Abstract

The Regional Ocean Modeling System (ROMS) is a regional
ocean general circulation modeling system solving the
free surface, hydrostatic, primitive equations over varying
topography. It is free software distributed worldwide for
studying both complex coastal ocean problems and the
basin-to-global scale ocean circulation. The original ROMS
code could only be run on shared-memory systems. With
the increasing need to simulate larger model domains with
finer resolutions and on a variety of computer platforms,
there is a need in the ocean-modeling community to have
a ROMS code that can be run on any parallel computer
ranging from 10 to hundreds of processors. Recently, we
have explored parallelization for ROMS using the Message-
Passing Interface (MPI) programming model. In this paper,
we present an efficient parallelization strategy for such a
large-scale scientific software package, based on an exist-
ing shared-memory computing model. In addition, we dis-
cuss scientific applications and data-performance issues
on a couple of SGI systems, including Columbia, the world’s
third-fastest supercomputer.
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1 Introduction

Ocean modeling plays an important role in both under-
standing current climatic conditions and predicting future
climate change. In situ oceanographic instruments pro-
vide only sparse measurements over the world ocean.
Although remote-sensed data from satellites cover the
globe, they only provide information on the ocean surface.
Information below the ocean surface has to be obtained
from three-dimensional (3D) ocean models.

ROMS solves the free-surface, hydrostatic, primitive
equations over varying topography by using stretched ter-
rain-following coordinates in the vertical and orthogonal
curvilinear coordinates in the horizontal. The objective of
this model is to enable the study of complex coastal ocean
problems, as well as basin-to-global scale ocean circula-
tion. This is in sharp contrast to more popular ocean mod-
els, such as the Modular Ocean Model (MOM) or Parallel
Ocean Program (POP), which were primarily designed
for basin-scale and global-scale problems.

Recently, we fully explored parallelization for the ROMS
ocean model with a Message-Passing Interface (MPI)
implementation. In this paper, parallelization strategies
for such a large-scale scientific software package, based
on an existing shared-memory model are investigated
with an MPI programming model so that users can have
great flexibility in choosing various parallel computing
systems. The model’s performance, efficiency, and its
applications for realistic ocean modeling are discussed
below.

2 ROMS: An Ocean Model Using a
Generalized Topography-Following
Coordinate System

The shared-memory ROMS (Shchepetkin and McWil-
liams, 2004) developed at the University of California at
Los Angeles (UCLA) was based on the serial version of
the S-Coordinate Rutgers University Model (SCRUM,;
Song and Haidvogel, 1994). This model solves the 3D,
free-surface, primitive equations separately for their exter-
nal mode, which represents the vertical averaged flow, and
the internal mode, which represents deviations from the
vertically averaged flow. The external-mode equations are
coupled with the internal-mode equations through the
non-linear and pressure-gradient terms (Song, 1998).
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A short time step is used for solving the external
mode equations, which satisfies the CFL condition aris-
ing from the fast-moving surface gravity waves. In order
to avoid the errors associated with the aliasing of fre-
quencies resolved by the external steps (but unresolved
by the internal step), the external fields are “time aver-
aged” before they replace those values obtained with a
longer internal step. A cosine-shaped time filter, centered
at the new time level, is used to average the external
fields. In addition, the separated time stepping is con-
strained to maintain exact volume conservation and con-
stancy preservation properties that are both needed for
the tracer equations.

In the horizontal direction, the primitive equations are
evaluated using boundary-fitted, orthogonal, curvilinear
coordinates on a staggered Arakawa C-grid (Arakawa and
Lamb, 1997). Coastal boundaries can also be specified as
a finite-discretized grid via land—sea masking.

The model is documented in each file component
(Hedstrom, 1997) with irregular coastal geometries and is
available to many scientists and researchers for a variety
of applications. The model has been shown to be capable
of dealing with the irregular coastal geometry, continen-
tal shelf/slope topography, and strong atmospheric forc-
ing. It has been successfully tested for many different
problems. Due to the many different applications, it is
necessary to implement an efficient parallel version of
ROMS that can be run on a variety of computing plat-
forms.

3 Parallelization of ROMS

Currently there are two major parallel computer models: a
distributed-memory model and a shared-memory model.
Between these two systems, a hybrid model, such as a
cluster of SMPs, is also available. Each of these systems
require a different programming model. On a distributed-
memory computing system, MPI software is usually used
for intercommunication among different computing proc-
essors for applications using domain decomposition tech-
niques, while system directives are used on a shared-
memory system to parallelize sequential codes.

These three models each have their own advantages
and disadvantages, but they all have to deal with similar
issues, such as parallel software portability, software reuse
and maintainability, and, more importantly, the total time
required to transform existing code into code that is exe-
cutable on advanced parallel systems. The debate about
whether the shared-memory or message-passing paradigm
is the best is bound to continue for a while. However,
many people believe that thread programming allows the
general user to gain a reasonable amount of parallelism
for a reasonable amount of effort. It is commonly believed
that MPI helps attain better parallel speedups and porta-

bility, but it may require more complicated programming by
the user. For applications where performance and porta-
bility are more important, an MPI model might be a good
choice, but for other applications where time is critical, a
thread model can be applied because of its simplicity.

3.1 PARALLEL SYSTEM AND
PROGRAMMING MODELS

The SGI Origin 2000 at Jet Propulsion Laboratory (JPL) in
Pasadena, CA, was the system available for use during
the period when this research was conducted. This system
is a scalable, distributed, shared-memory architecture with
MIPS R10000, 64-bit superscalar processors. The mem-
ory is physically distributed throughout the system for fast
processor access. Shared-bus symmetric multiprocessing
systems typically utilize a snoopy protocol to provide cache
coherence. It implements a hierarchical memory-access-
ing structure known as NUMA (Non-Uniform Memory
Access). From lowest latency to highest, there are four lev-
els of memory access: (1) processor registers; (2) cache —
the primary and secondary caches residing on the proces-
sor; (3) home memory; and (4) remote cache. Because of
the hardware design, it allows users to run two different
programming models: a thread programming model and a
distributed-memory programming model, such as MPI
code. Each model requires a different approach.
Recently, we had access to the National Aeronautics
and Space Administration (NASA) Columbia supercom-
puter, which ranked third on the 2005 TOP500 list of
the world’s fastest computers. It has 20 SGI Altix 3700
superclusters, each with 512 processors and global shared
memory across each supercluster. Currently, the proces-
sor speed is 1.5 GHz, which makes it possible for NASA to
achieve breakthroughs in science and engineering for the
agency’s missions, including the Vision for Space Explo-
ration. Columbia’s highly advanced architecture will also
be made available to a broader national science and engi-
neering community. We report here our early perform-
ance data from the SGI Origin 2000, and also some recent
performance data from the Columbia supercomputer.

3.2 AN MPI PROGRAMMING MODEL FOR
THE ROMS

A parallel-thread version of ROMS has recently been
developed on the SGI Origin 2000 by the UCLA ocean
research group and works well for many test cases. How-
ever, the thread version is still limited by certain hardware
used. In order to improve its portability and efficiency,
the design of an MPI version of ROMS was required. Our
objective was to design a parallel MPI version of ROMS
and to minimize the modifications to the code so that the
original numerical algorithms remained unchanged, and



any user of ROMS could easily use this parallel version
without any specific training in parallel computing.

To achieve this objective, we focused on the data struc-
tures of the code to discover all possible data dependences.
After the entire package was investigated, the horizontal
two-dimensional (2D) computing domain was chosen as
our candidate for parallelization since the depth length
scale is much smaller compared with the horizontal scale.
Based on domain decomposition techniques and the MPI
communication Application Programming Interface (API;
Gropp et al., 1999), a parallel MPI ROMS has been devel-
oped. In order to achieve load balancing and to exploit
maximal parallelism, a general and portable parallel struc-
ture based on domain decomposition techniques was used
for the flow domain, which has one-dimensional (1D) and
2D partition features and can be chosen according to dif-
ferent geometries.

For example, if the computational region is narrow, a 1D
partition structure can be used so the computation domain
is divided into N subdomains in one direction. For a rec-
tangular region, a 2D partition structure with N x M sub-
domains in the horizontal will be used for parallelization
to minimize the communication across the partition bound-
aries. Since ROMS covers various computational domains,
the flexible partition structure is necessary to control the
parallel efficiency. The depth has a much smaller scale
compared with the surface area, so the 1D and 2D parti-
tion method will give a very good efficiency for this kind
of application.

The MPI software is used for the internal communica-
tion encountered when each subdomain on each processor
needs its neighbor’s boundary data information; two ghost
cells data are needed by the numerical algorithm. The
module for communication is implemented separately
from the main ROMS package, and it can also be used by
other sequential software applications with similar data
structures for parallelization. After various tests of the
communication module, the combinations of UNBLOCK
RECEIVES, MPI BLOCK SENDS, and MPI WAIT were
used for data exchange on the partition boundaries, which
provided the best results among the choices available in the
MPI communication module. When a 2D partition structure
is used, an internal subdomain needs to exchange data
within two ghost cells on its four side boundaries and four
corners with its neighbor subdomains.

Besides communications among some internal grid
points, the communication module is also required for
boundary points communications if periodic boundary con-
ditions are applied. Also, for a subdomain that has other
physical boundaries rather than periodic boundary condi-
tions or internal subdomain neighbors, it only needs to
exchange its information with neighbors that are internal
grid points; elsewhere it will take the physical boundary
conditions instead of doing MPI communications.

With the 2D partition structure, the MPI communica-
tions for a subdomain are outlined as follows. The bound-
ary conditions that need to be handled separately are not
discussed here.

MPI communication module for ROMS:

Begin module

Loop sides

If (side == internal ) then

Pack data

MPI_TIrecv the neighbor data

MPI_Send data on the boundary to the neighbor
Unpack data

End if

End Loop

Loop corners

If (corner == internal ) then

Pack data

MPI_TIrecv the neighbor data

MPI_Send data on the boundart to the neighbor
Unpack data

End if

End Loop

Loop sides

If (side == internal ) then
MPI_Wait

End if

End Loop

Loop corners

If (corner == internal ) then
MPI_Wait

End if

End Loop

MPI_Barrier
End module

The implementation was carried out on the distributed
memory systems, and the code ran well on the SGI Ori-
gin 2000. It can be easily ported to other parallel systems
that support MPI. Recently, the code has been success-
fully ported to other supercomputers, such as Columbia
at NASA Ames (SGI Altix), the world’s third-fastest super-
computer.

4 Performance

For the parallel version of ROMS, timing tests were per-
formed on the SGI Origin 2000 and SGI Altix. Figure 1
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Fig. 1 The wallclock time for running the parallel MPI ROMS on the SGI Origin 2000 system using different numbers

of processors.

shows the wallclock time of the MPI code required on
the SGI Origin 2000 to integrate a model grid size of
1024 x 1024 x 20 for a fixed total simulation time. Fig-
ure 2 shows the wallclock time of the MPI code required
on the SGI Altix to integrate a model grid size of 1520 x
1088 x 30 for a fixed total simulation time. The total
wallclock time is significantly reduced by using more
processors for both small and medium grid size problems
on both systems.

Figures 3 and 4 show the speedup of the parallel MPI
ROMS with a couple of different problem sizes on both
the old system (SGI Origin 2000) and the new system

(SGI Altix). They give excellent speedup versus the
number of processors. From the point of view of scalabil-
ity, a large grid size problem gives better scaling results;
superlinear scalability is achieved on 20 processors for a
problem with a grid size 256 x 256 x 20, and the scaling
results for a problem with a grid size 256 x 128 x 20 are
also excellent for smaller numbers of processors. On the
SGI Altix, superlinear scalability is achieved on up to
200 processors for a problem with a grid size of 1520 x
1088 x 30.

The usual explanation for superlinear speedup is that
when more processors are involved, code fits into the
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Fig.2 The real time for running the parallel MPI ROMS on the SGiI Altix system using different numbers of processors.

cache better. Once the size of the problem becomes smaller
than the number of CPUs multiplied by cache size, the
superlinear speedup ends and communication overhead
causes performance degradation.

The SGI Origin 2000 is an older system, and the SGI
Altix is a modern system, but our code shows excellent
scalability on both systems. These systems are suitable to
run large-scale scientific applications with a large number
of processors if the parallel code is designed to take
advantage of the hardware strengths. The speedup curves
have a slight non-linear bend when more processors are
applied, which is due to the increase of communication

work for a fixed size problem. Once we find the region
with the superlinear scalability, we can adjust our prob-
lem size and the number of processors to efficiently use
the scalable computing system.

Additional numerical experiments were conducted with
various grid sizes and numbers of processors. Table 1 gives
the performance data of the parallel ROMS code with dif-
ferent grid sizes for 6000 time steps. The largest problem
has a global grid of 1024 x 1024 x 20 distributed on 64
processors. From this table, the MPI code scales well with
up to 16 processors, but when the number of processors
goes to 64, the MPI code efficiency decreases due to the
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Fig. 3 Speedup of the parallel MPI ROMS on the SGI Origin 2000 system with two different grid sizes.

increases in the communication overhead, the hierar-
chical memory access structure of the SGI Origin 2000,
and the original design of the sequential code. The code
was initially developed on sequential computing systems,
so despite technological advancements, the ROMS code
performance on modern computers is seriously constrained
because traditional programming methods for a single-
CPU system will not fully exploit the benefits of today’s
supercomputers and parallel systems. These systems
require modern programming methods to use their fast
CPUs and large memory systems. In order to use these
systems efficiently, most existing codes require certain

modifications. Once appropriate optimization techniques
are applied, the code performance will improve dramati-
cally (Wang et al., 1997).

Table 2 gives the performance data of the parallel ROMS
code with different numbers of processors on the SGI Ori-
gin 2000 for the above application with 1024 x 1024 x 20
for a fixed total simulation time. It shows very good spee-
dup to 64 processors for this test problem.

On the SGI Altix, Table 3 gives the detailed per-
formance data of the parallel ROMS code with different
numbers of processors for the North Pacific model with
a larger grid size problem of 1520 x 1088 x 30 for a
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Table 1
Wallclock times (in seconds) using different numbers of processors and grid sizes on the SGl Origin

2000.

PES 1 2 4 8 16 32 64

Grid size 128 x 128 128 x 256 256 x 256 256 x 512 512 x 512 512 x 1024 1024 x 1024
x 20 x 20 x 20 x 20 x 20 x 20 x 20

MPI code 184 185 195 201 207 229 327

fixed total simulation time. It shows very good spee- cal results of the application are discussed in the next

dup to 256 processors for this real 3D problem. Numeri- section.



Table 2

Waliclock times (in seconds) using different numbers of processors for the Pacific Ocean model
with a fixed total simulation time on the SGI Origin 2000 for a small size problem (1024 x 1024 x 20).

PES 4 8 16 32 64
MPI code 6410 3108 1635 1121 758
Table 3 grated for 15 years, forced with real-time air—sea fluxes

Walliclock times (in seconds) using different
numbers of processors for the North Pacific
Ocean model with a fixed total simulation time
on the SGI Altix for a medium size problem
(1520 x 1088 x 30).

PES 32 64 128 256
MPI code 134,725 57,595 27,815 19,915

5 Applications

One of the unique applications of MPI ROMS is to simulate
both the large-scale ocean circulation (usually at coarse-
spatial resolutions) over a particular ocean basin (e.g. the
Pacific Ocean) or the whole globe, as well as the small-
scale ocean circulation (usually at high-spatial resolu-
tions), over one or more selected areas of interest. Using
the MPI ROMS described in previous sections, we have
developed a scale model of the whole Pacific basin at
12.5-km resolutions and two 5-km regional models of the
coasts of the North and South American continents. The
scientific objective of the regional modeling approach is
to simulate a particular oceanic region with sufficient spa-
tial resolutions. The nested-modeling approach coupling
a regional, high-resolution ocean model within a coarse-
resolution ocean model, usually over a much larger domain,
will allow us to model the oceanic response to both local
and remote forcing.

The Pacific Ocean model domain extends in latitude
from 45°S to 65°N, in longitude from 100°E to 70°W, and
is discretized into 1520 x 1088 grid cells with a horizontal
resolution of 12.5 km. The underlying bottom topography
is extracted from ETOPOS5 (NOAA, 1998), with a mini-
mum depth of 50 m near the coastal wall and a maximum
depth of 5500 m in the deep ocean. Water depth is discre-
tized on to 30 layers following the s-coordinates (Song
and Haidvogel, 1994), with stretching parameters 6 = 7
and 6, = 0 to allow a good representation of the surface
boundary layer everywhere in the domain. The prognostic
variables of the model are the sea surface height , poten-
tial temperature 7, salinity S, and horizontal components
of the velocity u, v. Initial T and § are obtained from a long-
term climatology (Levitus and Boyer, 1994). The model
was spun-up first for eight years, forced with climatolog-
ical (or long-term mean) air—sea fluxes. Then it was inte-

during 1990-2004. The surface forcing consists of the
monthly mean air—sea fluxes of momentum, heat, and fresh
water derived from the Comprehensive Ocean—Atmosphere
Data Set (COADS) climatology (Da Silva et al., 1994).
For the heat flux, a thermal feedback term is also applied
(Barnier et al., 1995).

Our open boundary conditions are based on the com-
bined method of the Sommerfeld radiation conditions
and a nudging term:

Here, T is the time-scale for nudging the model solution
0 to external data y, which is obtained from monthly cli-
matology. The phase speeds c, and ¢, are projections of the
oblique radiation of Raymond and Kuo (1984). Although
the techniques described above have been widely used in
computational mathematics, there are many issues and dif-
ficulties related to MPI coding because the message pass-
ing involves the boundary parallelization. These issues
have not been resolved in the original sequential code. In
this study, we have put a great effort initially in designing
the compatibility between the open boundary algorithms
and the external data. By carefully using the MPI commu-
nication calls with the open boundary algorithms and the
external data, the parallel code reproduced the same data
from the original sequential code. As shown in Figure 5,
the open boundary conditions are now working properly
in real applications.

Figure 5 shows a snapshot of the simulated sea surface
temperature during the fall season toward the end of the
eighth year. In agreement with observations, both the “warm
pool” in the western equatorial Pacific and the “cold tongue”
in the eastern equatorial Pacific are well simulated. Trop-
ical instability waves are also reproduced in the eastern
equatorial Pacific. These waves have a wavelength of the
order of 1000 km and a periodicity of approximately 30 d
propagating westward. Both the cold tongue and the trop-
ical instability waves have tremendous impact on how
much cold water upwells from the deep ocean and play
major roles in biological productivity and the carbon
cycle in the ocean. Away from the equator, there is a
clockwise ocean flow in the North Pacific and a counter-
clockwise one in the South Pacific. These middle latitude



Fig. 5 Snapshot of simulated sea surface temperature from the MPI ROMS North Pacific model with a domain in lat-

itude from 45°S to 65°N and in longitude from 100°E to 70°W.

circulation “gyres” are forced by atmospheric winds and
play an important role in the air—sea interactions that
impact weather and climate.

The parallel MPI ROMS model was extensively verified
against the shared-memory ROMS model that had already
been verified against the original sequential code. From our
current numerical results, qualitatively, the MPI ROMS
reproduces many of the observed features in the Pacific
Ocean, another testimony to the success of the parallelization
procedure. Encouraged by this initial success, we are cur-
rently in the process of systematically evaluating the model
solution against various existing observational data sets.

6 Concluding Remarks

We have successfully developed a parallel version of
the ocean model ROMS on shared-memory and distrib-
uted-memory systems. An efficient, flexible, and porta-
ble parallel ROMS code has been designed using the MPI

programming model. It produces significant speedup in
execution time, which will dramatically reduce the total
data processing time for complex ocean modeling. The
code scales excellently for certain numbers of processors,
and achieves good speedup in performance as the number
of processors increases. Superlinear scalability has been
obtained on up to 200 precessors on the Columbia, which
is sufficient for a regional ocean model to achieve high-
resolution simulations with a moderate number of proc-
essors. Although the code experienced slow down for a
larger number of processors, it can be improved if opti-
mization techniques are applied. The code is ready to be
ported to any shared-memory or distributed-memory par-
allel system that supports the thread programming model
or the MPI programming model.

Based on the parallel version of ROMS, new numerical
simulations of ocean flows have been carried out, and a
detailed numerical study of the Pacific coast shows many
interesting features. The parallel code has been also applied



to study other coastal oceans. Several coastal models
have been successfully implemented by using the parallel
ROMS, and the data have been verified by real ocean data
from satellites, which will be reported separately. The
present results illustrated here clearly demonstrate the
great potential for applying this approach to various real-
istic scientific applications.
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